IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Quantum fractals in boxes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 6617
(http://iopscience.iop.org/0305-4470/29/20/016)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 02:51

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 6617-6629. Printed in the UK

Quantum fractals in boxes

M V Berry
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 22 April 1996

Abstract. A quantum wave with probability densi# (r, r) = |¥(r, )|, confined by Dirichlet
boundary conditions in @-dimensional box of arbitrary shape and finite surface area, evolves
from the uniform statel(», 0) = 1. For almost all positiong = x1, x2...xp, the graph of the
evolution of P is a fractal curve with dimensioPyme = 7/4. For almost all times, the graph

of the spatial probability density is a fractal hypersurface with dimensi@pace= D + 1/2.

When D = 1, there are, in addition to these generic time and space fractals, infinitely many
special ‘quantum revival' times whe® is piecewise constant, and infinitely many special
spacetime slices for which the dimensionfis 5/4. If the surface of the box is a fractal with
dimensionD — 1+ y (0 < y < 1), simple arguments suggest that the dimension of the time
fractal is Dime = (7 + y)/4, and that of the space fractal pace= D + 1/2 4 y/2.

1. Introduction
My purpose here is to draw attention to some unexpected fractal properties of the probability
density

P(r.t)=|W(r, ) (r = {x1,x2, ... xp}) 1)

for what is perhaps the simplest imaginable nonstationaryd8lahger wavel. This evolves
from a spatially uniform initial state in @-dimensional boxB, confined by Dirichlet
boundary conditions at the impenetrable wall, that is, in appropriate units,

0,V (r, 1) = —V2U(r,1);

2
Y(r,t) =0 forr on 0B; W (r,0) =1 forrin B. 2
W is a superposition of the modes (r) of the box; these satisfy
— V2¢,(r) = Kipu (),
b .2 3)
¢,(r) =0 for r on 0B, d”r ¢s(r) = 1.
B
The solution of (2) is
W(r,t) = Zcm(r) exp{—ikZt}, wherec, = / d?r’ ¢, (') (4)
B

n=0
In (2) the initial and boundary conditions are discordant, enforcing an initial
discontinuity at the walls. As | shall show, the effect of this discontinuity is to make
the superpositionV (r, ¢) a fractal function in time and space. The fractalitydbfdepends
on the high eigenstates— oo in the superposition, that is, on the semiclassical asymptotics
of the wave. Nevertheless, the fractal dimensions of the time fractals (section 2) and the
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space fractals (section 3) are universal, that is independent of the chaos or integrability
of the geodesics in the box, provided the ¢ 1-dimensional) area odB is finite. In
section 4 the special case of a one-dimensional box is studied in detail, and the fractal
properties illustrated by computations. The general arguments do not apply to boxes with
fractal boundaries, for which the area ®B is infinite; these are considered in section 5.

The same fractal properties in time and space will apply to any boundary condition
except Neumann (for which the spatially uniform wave persists, because it is an eigenstate),
and to any initial state with a spatial discontinuity anywhere. Although all these fractals
are exact solutions of the Sétinger equation in boxes, they represent states with infinite
energy, so that any physical implementation can only be approximate: the finest fractal
detail will be softened in a way that depends on the largeitighest energy?) in the
superposition. Nevertheless, the analogues of the time and space fractals have been seen
in the optical Talbot effect (Berry and Klein 1996), in transverse and longitudinal sections
of the field beyond a coherently-illuminated diffraction grating (these optical fractals are
not exact solutions of Maxwell's equations, and their fine detail is softened by non-paraxial
effects).

More generally, | expect time and space fractals to develop from discontinuous initial
states in quantum systems that are not billiards—for example smooth potentials—and, more
generally still, for any linear wave equation with a nonlinear dispersion relation; calculation
of the fractal dimensions in any such case should be a simple extension of the methods
presented here.

The calculations of fractal dimensions (Mandelbrot 1982) will depend on the application
to W of a result for Fourier series

fu) = Zam exp{imu} (5)
where a,, have random or pseudorandom phases. If the power spedtrfh has the
asymptotic form

lam|? ~ |m| P as|m| — oo, where 1< 8 < 3, (6)

then the graphs of Rg and Imf are continuous but non-differentiable, with fractal
dimension

Dy =1(-p). 7

Thus 8 = 3 corresponds to a (just) differentiable curve with = 1, andg = 1 would
correspond to an area-filling curve withy = 2. Equation (7) can be obtained (by simple
dimensional analysis) from the result (Orey 1970) thaf ihas dimensionD; the mean
square increment of (1) over an infinitesimal distanc&u is proportional ta(Au)*—2?r; for
a straightforward derivation (see Berry and Lewis 1980). This applies viherepresents
the capacity dimension, but in the present context | expect it to hold for the Hausdorff and
other fractal dimensions as well.

Almost always, the graph dff (u)|? also has the fractal dimensiab,. This follows
from two facts: for real functions, squaring corresponds to local multiplication by a constant
(e.g. in the interval R¢ to Ref + A, A expands to A Ref), which leaves the fractal
dimension invariant; and fractal dimension is preserved in the @ (1))?+ (Im £ (u))?,
unless Ref and Imf are too closely connected (for example if the fractality fofis
embodied in a phase factor). The appendix contains a direct demonstration from (5) and
(6) that| f(u)|*> has the dimensio®;. Therefore the fractal properties of Reand Im¥
are inherited by the probability densi(r, 7).
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2. Time fractals

Consider the wave (4) as a function rofor fixed ». To apply (7), the power spectrum in
the mode labeh must be transformed into that for the Fourier variabje= E (E is the
analogue ofn in (5)). Thus the power spectrum is

dn
B2 = . 2 02(py 2 )
la(E)|” = lcal ¢n(7")dE (8)
From the Weyl rule for quantum billiards (Baltes and Hilf 1976),
n(E) ~ CVEP/? 9

whereV is the volume ofB, and here and hereaftér will denote a generic dimensionless
constant. The formula (8) should be interpreted as an average over many states with quantum
numbers nean(E). Normalization fixes the average ¢f(r) as 1V for all », so that

la(E)|? = c2CEP/?7L, (10)
The mode coefficient, is given by (4), (3) and the divergence theorem as

=t f 1 V2,0 = — = [ dP oyt () (11)
E B E B

where d,,; denotes the outward normal derivative. Recalling that the fractal dimension

depends on the semiclassical asymptotics, that is largee can calculate the boundary

integral in (11) locally, by representing, as the superposition of Dirichlet-adapted plane

waves. Ifz is the inward normal coordinate, = {u1, ...up_1} are coordinates oAB, and

there areN waves in the superposition, then

C

$u(r) = —— > sin{k;z}cos{k, - u + ag},
VNV ; (12)
wherek? + |k, > = E
where thex;, are sets of phases, different for each statdhus
C
OoutPn (w0, 0) = ——— k. cos{k, « u + o} . 13
oy (. 0) = —— - ; { o) (13)

Inserting this expression into (11) and averaging over the phases of stateg,near
find
2= % d”~tv (k? cos{k, - v}) = %
where A is the area o B and () denotes averages over the distribution of wavevectors
k. The semiclassical limit for groups of states dictates that the densityfrabust be
microcanonical, that is

(8(kw)) (14)

S(E — k?)
ky=——"-. 15
Probtk) = ok (£ — 12) (15)
Elementary scaling gives
dk, Pk, 8 (E — k2 — |ky|?) 8 (ky) C
(8 (k) = J dks £~k ) = — 5 (16)
[dPES(E — k2) E(D-D/2
and thence, from (14), the mode coefficient
2-_ 4 (17)

n VvV E(D+D/2°
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The same result can be guessed directly from the boundary integral (11), using the
principle that the normal derivative ofB consists of randomly positive and negative
peaks whose linear dimensions are approximately the wavelengthcdrresponding to
E, and whose heights are of ordétr Thusc¢, ~ (1/E) x k x (area of peak=
k=P=Dy x \/(number of peaks= Ak(P-D) ~ E~(P+D/4,

Thus the power spectrum (10) is

CA
2 _
Now we can identify8 = 3/2 in (6) and hence, from (7), the fractal dimension of the

evolution of the probability density

7
Diime = Z (19)

This is the main result of this section.

The foregoing argument involved groups of states, rather than individual states, and so
applies to all boxes, independently of their classical integrability. However, the emphasis
on microcanonical averaging is reminiscent of classical chaos (Berry 1977), and so it is
interesting and instructive to obtain the power spectrum (18) explicitly for two integrable
boxes, using different arguments.

The first box is theD-dimensional cube of sidé. The states, labelled by the vector of
quantum numberg = {n1, ny, ...np}, are

D/2 D
bu(r) = <i) nsin(m?x‘). (20)

s=1

Integration over the box eliminates the states with even quantum numbers, so we can label
the states with the reduced set

q=1{q1,92,..-qp}, (0< g <00), wheren; = 2g; +1. (21)
Thus
20\ " 2 1
X
a=(%) 1 e @
T s=1 (q_v + %)
The energy is
2 2 D 2
_ 12 _ 1
E(q) =k = (L) ; (g +3) (23)

and the power spectrum, obtained from the analogue of (8), is
1
a(E)? = 5 3 cq0LE — E(g}. (24)
q

In finding the asymptotics of this expression for larffle the simplest strategy, of
replacing the sum by an integral, fails because it leads to a divergence. This is because
the main contributions come from the neighbourhood of the coordinate axgsspace.
Integrating along each axis, and summing perpendicularly, gives

la(E)|?

DL2<2)D/‘°°dq1 b {(L)Z )
~2 (5 e s () E—dd-
4r? \ 72 o 4f q; H(qs-l-l)z 27

~qp s=2 >

G0+ ]

s
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D 2\"” L 1
~gpon () I

3/2
it sz (g + 1P [1- 82 22, (0 + 1))

_ Dr (2\"& 1 D
~ 8L E¥2\ 72 Z 12— 2Dty [ E3/2 (25)
4=0 (a+ 3)

in agreement with the general result (18).
The second box is the unit disc in the plane. In polar coordinatesr, ), the modes
are

Gui (1) = NutJy(rju) €XPLi 16}, Eu =k =j5 (26)
where j,; is the nth zero of the Bessel functioh, and N;, are normalization constants.
Integration over the disk eliminates the states with 0, leaving (after normalization)

o= AT 27)

Jn0
Thus the states selected by the superposition are those with no variation round the boundary
of the disk; this is analogous to the factik,) in the general equation (14), which also
locally eliminates variations ofB. For largen, j,o ~ 7w (n — 1/4). The power spectrum is
therefore

47 1 dn 2
2
nl = - ~ 28
anl j% m dE 7 E®? (28)

again agreeing with the general result (18).

3. Space fractals

Considered as a function ef the graph of the probability densi®(r, ) is a hypersurface,
whose fractal dimensiomspace betweenD and D + 1, we now determine. From the
superposition (4), the momentum (i.e. wavevector) probability density is

5@ =Y cncad; 0)bu () explit? — kD)1 (29)

where the overbars denote Fourier transforms. Slight averaging pwer: (regarding
the exponentials as pseudorandom phases) diagonalizes the double sum, giving the spatial
power spectrum as

= 2 n 2

@] =Yg (30)

For the largern and p that determine the spatial fractality, we can use (17) for the

mode coefficients, and the semiclassical microcanonical momentum distribution (15) for the
eigenmodes, so that

_ 2 2 3(p — kn) C'ZI dn A
@ ~ ~C =C——. (31
| (p)| zn: “n dep/ 8 (p' —ky) kr?_l dk, ky=p pPt o

Now consider the probability density along any line Bn say, thex direction. Then
the power spectrum of this function afis

|a<kx>|2=/de8(px k) [P ()

~CA d®1p,  _CA [*  duuP?  CA 32
- (k2 + p2) P07 Tk )y @2+ 1)0hiz T g2 (32)
x 1 X X
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Figure 1. Probability densityP (¢, r) = |W(&, 7)|2 for a particle in a one-dimensional box,
calculated from (35). &): as a function ofr for & = 0, showing the time fractal, with
dimensionDime = 7/4. (b): as a function of for r = 1 — 2-%3, showing the space fractal,
with dimensionDgpace= 3/2.

where the last equality (with the constafitreassigned) is justified because the integral
converges wheD > 2 (and whenD = 1 the power spectrum is given directly by (31)).
Along this line, the fractal dimensio®;,. of the graph ofP is given by (7), in which,
from (6), 8 = 2. Thus

Diine = %(5 -2 = g (33)
Finally, the fractal dimension of the hypersurfacepbver r is (Mandelbrot 1982)

Dspace= Dine+ D —1= D + % (34)

4. One dimension

For a particle confined on the unit intervigl| < 1/2, the superposition (4) can be easily
determined to be the following function gfand a rescaled time:

\D(EJ):SZ (1" cos{2x & (1 + 1)} exp{ =i ¢ (n + )}

= % i (_l): exp{in [2& (n+3)—t(n+ %)Z]} (35)
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(this formula is a special case of (20)—(23)). The symmetries
VE —1) =" ¢ 1); VE T+ =exp{-in/4 V(E 1)
ie. W, 1— 1) =exp{—in/4} V¥, 1);
V(=5 1)=V(E, 1) VE+11)=—-V(E 1)
e V(l—§1)=—-V(, 1)

mean that the probability densi®§ (&, t) need be calculated only for times {0t < 1/2),
and can be periodically continued outside the box, that iggpr- 1/2. The wave (35),
with a constant added, also describes the Talbot effect (Berry and Klein 1996) for light
diffracted into the space > 0 beyond a grating with sharp slits whose width is half the
grating period.

The series (35) converges slowly, but can still be used to compuaed so illustrate
the time and space fractals (figure 1 shows typical examples). The greater irregularity of
the time fractal, with dimensioyme = 7/4, in comparison with the space fractal, whose
dimension (equation 34) i®syace= 3/2, is evident, and the curves resemble others (e.g.
Berry and Lewis 1980) with similar fractal dimensions. Both fractals are illustrated as a
landscape in figure 2 (from the side) and figure 3 (in plan view). It appearsPi{#atr)
is not an amorphous fractal, but contains much additional structure. Two aspects of this
structure will now be elucidated.

(36)

Figure 2. llluminated landscape plot of the fractal probability dengit, 7) in time and space
for a particle in a box.

First, at rational timeg the graph ofP is not fractal but is piecewise constant. For
example, wherr = 0 the initial condition requires® = 1, and whenr = 1/2 it can be
seen in figures 2 and 3 that = 2 for |£] < 1/4 and P = 0 for 1/4 < || < 1/2. These
rational times correspond tuantum revivalswhere the initial wave gets reconstructed by
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Figure 3. Plan view of the fractal probability density landscapé&, t) in time and space for
a particle in a box.

constructive interference, either exactly (integgor partially  fractional but non-integer).
For a large class of quantum systems, the theory of revivals was given by Averbukh and
Perelman (1989) and recently elaborated by Leichtlal (1996) (see also Mallalieu and
Stroud 1995). The particle in a box provides a surprisingly simple particular case that can be
studied in detail; this fact was also appreciated by Stiteal (1996), who gave the theory
of revivals for this case and illustrated it with Gaussian (that is, smooth) wavepackets. The
theory is almost identical to that of the self-images of diffraction gratings in the Talbot
effect, given in detail elsewhere (see, for example, Berry and Klein 1996), so here | give
just the outline of the analysis.

Let the wave (35) be written as the integral, over the initial state, 0) = 1, of the
propagatork (¢, t), namely

12
W T) = / LK 8,

where K(§,7)= ) exp{in [25 (n+3)—t(n+ %)2]} . (37)

n=—00

Now sett = p/q, wherep andg are mutually prime integers, and split the sum into groups
of ¢ terms by defining

n=Ig+s (—oo <l <00, 1<s<q). (38)
The crucial observation is that the exponential involviAgan be simplified, because
exp{—inpql?} = exp{—inge,l} wheree, =1 (p even 0 (p odd). (39)

This enables the sum ovérto be evaluated as a series&ofunctions, to give, after some
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reduction,

£(62)= 3 £ wamn(e-i(o-2) )

where
1 . p e, n
An(qv P) = ﬁ eXp{ITL’ <4q —+ E + q)}
q
X ZeXp{iZ ((2n + gep)s — psz)} .
s=1

When combined with the integral (37), this result shows that the wave for these rational
times is the superposition gfshifted copies of the initial wave in the box (set equal to zero
outside). The nature of the superposition is determined byAthewhich are pure phase
factors, that is

An(qv P) =eXp{i<Dn (61» p)} (41)

The phases can be evaluated explicitly by recognizing the formula foin (40) as
a variant of the Gauss sum of number theory. An elementary derivation can be found in
appendix A of Hannay and Berry (1980). The result is

o p =7 |3(a+ 241+ 4 2o (7))] @

(40)

= %(p+ﬁ)+”+”(p\q)2(n+2q +1- ;( ) “2)
=7 (q+ +3)+ + % 4p\@) (n + 39) ) -1 S
(@) : (peven g odd; (b) : (p odd g even; (¢) : (p odd g odd.
Here, (p\q) is the integer inverse gh modg, given by
(p\g) = p* P~ modq (43)

where¢g(g) denotes Euler’s totient function (number of positive integers less ghtmat

are relatively prime t@y), and(i}’) is the Jacobi symbol, which takes the vatlug or —1,

and is defined as the product of Legendre symk{ofs) for all prime factorss of ¢, these
in turn being defined as

(44)

<p> +1 if there is an integem such thatn? = p mods }
N

1 if there is no integem such thatn? = p mods.

Figure 4@) shows an example of a fractional revival of the probability density, computed
using these formulas. Confirmation of the correctness of the analysis was obtained by
computing ¥ for the samer with the modal series (35), which gave exactly the same
picture (apart from Gibbs oscillations smoothing the discontinuities, caused by truncating
the series).

The second peculiarity of the one-dimensional box was discovered after noticing the
diagonal lines in figures 2 and 3. These lines correspond to particular spacetime slices
through theP landscape, on which, as will now be shown, partial destructive interference
between the terms in (35) reduces the fractal dimension.
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Figure 4. (a) Fractional quantum revival at time= 1/10 for particle in one-dimensional box;
(b) Fractal probability density along the spacetime skce- (1 — 7)/2, with the dimension
DdiagonaI: 5/4-

Consider the phase in the second sum in (35), namely

X(E,t,n):n[n+2$ (n+%)— r(n+%)2] (45)
on the spacetime slice

We seek cancellation between pairs of exponentials with positive and negaitivé€35),
that is betweem and —n — k. The condition for this is (after noting the opposite signs of
the factor ¥(n + 1/2) for positive and negative),

Ax =0 (mod 2m) (47)
where
Ax Ex(ar—i—%b,t,n)—x(at+%b,r,—n—k)
=a@n+k)[1+b+12a+k—1)] (48)

The condition (47) must hold everywhere on the slice, that is for alind also for allz.
Thus

a=311-k), b integer (49)
Therefore

Ax =mk(1+b) (50)
from which follows, from (46),

b odd if k is odd,b unrestricted ifk is even. (51)
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Collecting these results, we find cancellation on the lines
E:m‘r—l—n—i—%(m;ﬁO), S:(m+%)r+%n (m, n integey. (52)
Some of these lines are shown in figure 5. Note that the picture is not symmetrical; for
example, the liné = t is not present, although the lide= 1/2 — ¢ is. On any such line,
the contribution of terms, —n — k in (35) is proportional to

1 1 k—1 k—1
— (53)
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Figure 5. Spacetime lines on which the probability density for the particle in a one-dimensional
box has the fractal dimensioRgiagonai= 5/4-

In the power spectrum, the contribution of these terms is therefore reduced: fota
n—%, giving an extra factol£~! in the power spectrum (18) in the calculation of the time
fractal. (The casé = 1 is an exception, because the cancellation is exact; this corresponds
to the excluded value: = 0 in the first equation in (52), that is to the edges of the box,
whereWw = 0.) Therefore8 = 5/2 in (6), and, from (7), the fractal dimension of the graph
of P along these special spacetime lines is

DdiagonaI= 2 (54)

One of these diagonal fractals is shown in figurb)4{t is noticeably less irregular than
either of the fractals in figure 1, whose fractal dimensions are greater. Duistermaat (1991)
gives a full analysis of a function closely related to this ‘diagonal’ special case. The lines
(52) also appear as 'canals’ in the analogous computations for Gaussian wavepackets (Stifter

et al 1996).
There may be further treasures hidden in the sum (35), for example spacetime lines (not

necessarily straight) on which more complicated interference between groups of terms leads
to fractal probability densities with dimensions different frdPgme, Dspace OF Ddiagonat

5. Fractals in fractal boxes

Suppose now that the box has a fractal boundary, thatBishas dimensionD — 1+ y
(where 0< y < 1), rather thanD — 1. Therefore the ared (that is, theD — 1 measure
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of aB) is infinite, but theD — 1 + y measureA, is finite. The arguments of sections 2
and 3 no longer apply, because they lead to divergent formulae involifgf (18) and
(32)). 1 will suggest a simple modification that giv&&me and Dspacein these cases. The
modification is the same as that which led to a modified form of the corrections to Weyl's
law for the eigenvalue counting function in boxes with fractal boundaries (Berry 1979); this
was far from rigorous, and it is still not clear exactly when it applies (see e.g. Lapidus 1991,
Lapidus and Pomerance 1996), although it probably holds for ‘non-pathological fractals’,
where the Hausdorff, Minkowski and other fractal dimension$ Bfare the same.

The physical idea underlying the modification is that the box eigenfunetign) is
insensitive to details of B on linear scales finer than the wavelengitk,l This suggests
that in calculating the mode coefficient in (4), B can be replaced by the boundary
smoothed over a wavelength, so thaican be replaced by the wavelength-smoothed area
A(k,), where

Ak) ~ A k. (55)
With this replacement, and recalliig= +/E, the power spectrum (18) becomes
CA
2 _ )4
la(E)|” = W (56)

Thus in (7)8 acquires an extra contributiony /2, and the dimension of the time fractal is
changed from (19) to

(7+y)
Diime = 4 4 . (57)
Similar reasoning applied to (31) gives an extra faétoin (31), and hence an extra factor
kY in (32), so that nows acquires an extra contributiony, and the dimension of the space

fractal is changed from (34) to

1
Dspace= D + é + g (58)

It is interesting that in the limiy — 1 for whichd B is no longer continuous, the probability

density P approaches a function that is discontinuous in both time (becByse — 2)

and space (becaud®pace— D + 1).
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Appendix. Intensity and amplitude fractals

For the amplitude (5), the intensity is
W =f@P =YY ana;explim —nyu} = Lexpfilu}.
l

m n

wherel, = Y " a,a;. (A1)

The power spectrum of («) is the average off;|? over the random phases of thg, that
is

(111%) pases= <Z Za,’:1+1an+zama:> = lanl? lanl?. (A2)
m n

phases n
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For |/] > 1, the sum over is dominated by the regions near= 0 andrn = —/, and the
asymptotic behaviour (6) gives

2
(17112) pases™ P > lal?. (A3)

The sum exists whenevegd > 1, that is whenever the functiofi(u) is continuous. Then
the power spectrum of the intensify and hence its fractal dimension, is indeed the same
as that of Ref and Imf, as argued in section 1.
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