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Quantum fractals in boxes

M V Berry
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 22 April 1996

Abstract. A quantum wave with probability densityP(r, t) = |9(r, t)|2, confined by Dirichlet
boundary conditions in aD-dimensional box of arbitrary shape and finite surface area, evolves
from the uniform state9(r, 0) = 1. For almost all positionsr = x1, x2...xD , the graph of the
evolution ofP is a fractal curve with dimensionDtime = 7/4. For almost all timest , the graph
of the spatial probability densityP is a fractal hypersurface with dimensionDspace= D + 1/2.
When D = 1, there are, in addition to these generic time and space fractals, infinitely many
special ‘quantum revival’ times whenP is piecewise constant, and infinitely many special
spacetime slices for which the dimension ofP is 5/4. If the surface of the box is a fractal with
dimensionD − 1 + γ (0 6 γ < 1), simple arguments suggest that the dimension of the time
fractal isDtime = (7 + γ )/4, and that of the space fractal isDspace= D + 1/2 + γ /2.

1. Introduction

My purpose here is to draw attention to some unexpected fractal properties of the probability
density

P(r, t) ≡ |9(r, t)|2 (r = {x1, x2, . . . xD}) (1)

for what is perhaps the simplest imaginable nonstationary Schrödinger wave9. This evolves
from a spatially uniform initial state in aD-dimensional boxB, confined by Dirichlet
boundary conditions at the impenetrable walls∂B, that is, in appropriate units,

i∂t9(r, t) = −∇29(r, t);
9(r, t) = 0 for r on ∂B; 9 (r, 0) = 1 for r in B.

(2)

9 is a superposition of the modesφn(r) of the box; these satisfy

− ∇2φn(r) = k2
nφn(r),

φn(r) = 0 for r on ∂B,

∫
B

dDr φ2
n(r) = 1.

(3)

The solution of (2) is

9(r, t) =
∞∑

n=0

cnφn(r) exp
{−ik2

n t
}
, wherecn =

∫
B

dDr′ φn(r
′) (4)

In (2) the initial and boundary conditions are discordant, enforcing an initial
discontinuity at the walls. As I shall show, the effect of this discontinuity is to make
the superposition9(r, t) a fractal function in time and space. The fractality of9 depends
on the high eigenstatesn → ∞ in the superposition, that is, on the semiclassical asymptotics
of the wave. Nevertheless, the fractal dimensions of the time fractals (section 2) and the
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space fractals (section 3) are universal, that is independent of the chaos or integrability
of the geodesics in the box, provided the (D − 1-dimensional) area of∂B is finite. In
section 4 the special case of a one-dimensional box is studied in detail, and the fractal
properties illustrated by computations. The general arguments do not apply to boxes with
fractal boundaries, for which the area of∂B is infinite; these are considered in section 5.

The same fractal properties in time and space will apply to any boundary condition
except Neumann (for which the spatially uniform wave persists, because it is an eigenstate),
and to any initial state with a spatial discontinuity anywhere. Although all these fractals
are exact solutions of the Schrödinger equation in boxes, they represent states with infinite
energy, so that any physical implementation can only be approximate: the finest fractal
detail will be softened in a way that depends on the largestn (highest energyk2

n) in the
superposition. Nevertheless, the analogues of the time and space fractals have been seen
in the optical Talbot effect (Berry and Klein 1996), in transverse and longitudinal sections
of the field beyond a coherently-illuminated diffraction grating (these optical fractals are
not exact solutions of Maxwell’s equations, and their fine detail is softened by non-paraxial
effects).

More generally, I expect time and space fractals to develop from discontinuous initial
states in quantum systems that are not billiards—for example smooth potentials—and, more
generally still, for any linear wave equation with a nonlinear dispersion relation; calculation
of the fractal dimensions in any such case should be a simple extension of the methods
presented here.

The calculations of fractal dimensions (Mandelbrot 1982) will depend on the application
to 9 of a result for Fourier series

f (u) =
∑
m

am exp{imu} (5)

where am have random or pseudorandom phases. If the power spectrum|am|2 has the
asymptotic form

|am|2 ∼ |m|−β as |m| → ∞, where 1< β 6 3, (6)

then the graphs of Ref and Imf are continuous but non-differentiable, with fractal
dimension

Df = 1
2(5 − β). (7)

Thus β = 3 corresponds to a (just) differentiable curve withDf = 1, andβ = 1 would
correspond to an area-filling curve withDf = 2. Equation (7) can be obtained (by simple
dimensional analysis) from the result (Orey 1970) that iff has dimensionDf the mean
square increment off (u) over an infinitesimal distance1u is proportional to(1u)4−2Df ; for
a straightforward derivation (see Berry and Lewis 1980). This applies whenDf represents
the capacity dimension, but in the present context I expect it to hold for the Hausdorff and
other fractal dimensions as well.

Almost always, the graph of|f (u)|2 also has the fractal dimensionDf . This follows
from two facts: for real functions, squaring corresponds to local multiplication by a constant
(e.g. in the interval Ref to Ref + 1, 1 expands to 21 Ref ), which leaves the fractal
dimension invariant; and fractal dimension is preserved in the sum(Ref (u))2+(Im f (u))2,
unless Ref and Imf are too closely connected (for example if the fractality off is
embodied in a phase factor). The appendix contains a direct demonstration from (5) and
(6) that |f (u)|2 has the dimensionDf . Therefore the fractal properties of Re9 and Im9

are inherited by the probability densityP(r, t).
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2. Time fractals

Consider the wave (4) as a function oft for fixed r. To apply (7), the power spectrum in
the mode labeln must be transformed into that for the Fourier variablek2

n ≡ E (E is the
analogue ofm in (5)). Thus the power spectrum is

|a(E)|2 = |cn|2 φ2
n(r)

dn

dE
. (8)

From the Weyl rule for quantum billiards (Baltes and Hilf 1976),

n(E) ≈ CV ED/2 (9)

whereV is the volume ofB, and here and hereafterC will denote a generic dimensionless
constant. The formula (8) should be interpreted as an average over many states with quantum
numbers nearn(E). Normalization fixes the average ofφ2

n(r) as 1/V for all r, so that

|a(E)|2 = c2
nCED/2−1. (10)

The mode coefficientcn is given by (4), (3) and the divergence theorem as

cn = − 1

E

∫
B

dDr ∇2φn(r) = − 1

E

∫
∂B

dD−1r ∂outφn(r) (11)

where ∂out denotes the outward normal derivative. Recalling that the fractal dimension
depends on the semiclassical asymptotics, that is largen, we can calculate the boundary
integral in (11) locally, by representingφn as the superposition of Dirichlet-adapted plane
waves. Ifz is the inward normal coordinate,u = {u1, ...uD−1} are coordinates on∂B, and
there areN waves in the superposition, then

φn(r) = C√
NV

∑
k

sin{kzz}cos{ku · u + αk} ,

wherek2
z + |ku|2 = E

(12)

where theαk are sets of phases, different for each staten. Thus

∂outφn(u, 0) = − C√
NV

∑
k

kz cos{ku · u + αk} . (13)

Inserting this expression into (11) and averaging over the phases of states nearE, we
find

c2
n = CA

V E2

∫
dD−1v

〈
k2
z cos{ku · v}〉 = CA

V E
〈δ(ku)〉 (14)

whereA is the area of∂B and 〈 〉 denotes averages over the distribution of wavevectors
k. The semiclassical limit for groups of states dictates that the density prob(k) must be
microcanonical, that is

prob(k) = δ(E − k2)∫
dDk δ(E − k2)

. (15)

Elementary scaling gives

〈δ(ku)〉 =
∫

dkz dD−1ku δ
(
E − k2

z − |ku|2) δ(ku)∫
dDk δ(E − k2)

= C

E(D−1)/2
(16)

and thence, from (14), the mode coefficient

c2
n = CA

V E(D+1)/2
. (17)
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The same result can be guessed directly from the boundary integral (11), using the
principle that the normal derivative on∂B consists of randomly positive and negative
peaks whose linear dimensions are approximately the wavelength 1/k corresponding to
E, and whose heights are of orderk. Thus cn ∼ (1/E) × k × (area of peak=
k−(D−1)) ×

√
(number of peaks= Ak(D−1)) ∼ E−(D+1)/4.

Thus the power spectrum (10) is

|a(E)|2 = CA

V E3/2
. (18)

Now we can identifyβ = 3/2 in (6) and hence, from (7), the fractal dimension of the
evolution of the probability density

Dtime = 7

4
. (19)

This is the main result of this section.
The foregoing argument involved groups of states, rather than individual states, and so

applies to all boxes, independently of their classical integrability. However, the emphasis
on microcanonical averaging is reminiscent of classical chaos (Berry 1977), and so it is
interesting and instructive to obtain the power spectrum (18) explicitly for two integrable
boxes, using different arguments.

The first box is theD-dimensional cube of sideL. The states, labelled by the vector of
quantum numbersn = {n1, n2, ...nD}, are

φn(r) =
(

2

L

)D/2 D∏
s=1

sin
(πnsxs

L

)
. (20)

Integration over the box eliminates the states with even quantum numbers, so we can label
the states with the reduced set

q = {q1, q2, . . . qD} , (0 6 qs 6 ∞) , wherens ≡ 2qs + 1. (21)

Thus

c2
q =

(
2L

π2

)D D∏
s=1

1(
qs + 1

2

)2 . (22)

The energy is

E(q) = k2
q =

(
2π

L

)2 D∑
s=1

(
qs + 1

2

)2
(23)

and the power spectrum, obtained from the analogue of (8), is

|a(E)|2 = 1

LD

∑
q

c2
q δ {E − E(q)}. (24)

In finding the asymptotics of this expression for largeE, the simplest strategy, of
replacing the sum by an integral, fails because it leads to a divergence. This is because
the main contributions come from the neighbourhood of the coordinate axes inq space.
Integrating along each axis, and summing perpendicularly, gives

|a(E)|2

≈ DL2

4π2

(
2

π2

)D ∫ ∞

0

dq1

q2
1

∑
q2,...qD

D∏
s=2

1(
qs + 1

2

)2 δ

{(
L

2π

)2

E − q2
1 −

D∑
s=2

(
qs + 1

2

)2

}
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= Dπ

8L E3/2

(
2

π2

)D ∑
q2,...qD

D∏
s=2

1(
qs + 1

2

)2
[
1 − 4π2

L2E

∑D
s=2

(
qs + 1

2

)2
]3/2

≈ Dπ

8L E3/2

(
2

π2

)D ∞∑
q=0

1(
q + 1

2

)2 = D

2D+1π L E3/2
(25)

in agreement with the general result (18).
The second box is the unit disc in the plane. In polar coordinatesr = (r, θ), the modes

are

φnl(r) = NnlJl(rjnl) exp{i lθ} , Enl = k2
nl = j2

nl (26)

wherejnl is the nth zero of the Bessel functionJl , and Nln are normalization constants.
Integration over the disk eliminates the states withl 6= 0, leaving (after normalization)

cn = −2
√

π

jn0
. (27)

Thus the states selected by the superposition are those with no variation round the boundary
of the disk; this is analogous to the factorδ(ku) in the general equation (14), which also
locally eliminates variations on∂B. For largen, jn0 ≈ π(n − 1/4). The power spectrum is
therefore

|an|2 = 4π

j2
n0

1

π

dn

dE
≈ 2

π E3/2
(28)

again agreeing with the general result (18).

3. Space fractals

Considered as a function ofr, the graph of the probability densityP(r, t) is a hypersurface,
whose fractal dimensionDspace, betweenD and D + 1, we now determine. From the
superposition (4), the momentum (i.e. wavevector) probability density is∣∣9̄(p)

∣∣2 =
∑
m

∑
n

cmcnφ̄
∗
n(p)φ̄m(p) exp

{
i(k2

m − k2
n)t

}
(29)

where the overbars denote Fourier transforms. Slight averaging overp or t (regarding
the exponentials as pseudorandom phases) diagonalizes the double sum, giving the spatial
power spectrum as∣∣9̄(p)

∣∣2 =
∑

n

c2
n

∣∣φ̄n(p)
∣∣2

. (30)

For the largen and p that determine the spatial fractality, we can use (17) for the
mode coefficients, and the semiclassical microcanonical momentum distribution (15) for the
eigenmodes, so that∣∣9̄(p)

∣∣2 ≈
∑

n

c2
n

δ(p − kn)∫
dDp′ δ (p′ − kn)

≈ C

[
c2
n

kD−1
n

dn

dkn

]
kn=p

= C
A

pD+1
. (31)

Now consider the probability density along any line inB, say, thex direction. Then
the power spectrum of this function ofx is

|a(kx)|2 =
∫

dDp δ(px − kx)
∣∣9̄(p)

∣∣2

≈ CA

∫
dD−1p⊥(

k2
x + p2

⊥
)(D+1)/2

≈ CA

k2
x

∫ ∞

0

du uD−2

(u2 + 1)(D+1)/2
= CA

k2
x

(32)
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Figure 1. Probability densityP(ξ, τ ) = |9(ξ, τ )|2 for a particle in a one-dimensional box,
calculated from (35). (a): as a function ofτ for ξ = 0, showing the time fractal, with
dimensionDtime = 7/4. (b): as a function ofξ for τ = 1 − 2−1/3, showing the space fractal,
with dimensionDspace= 3/2.

where the last equality (with the constantC reassigned) is justified because the integral
converges whenD > 2 (and whenD = 1 the power spectrum is given directly by (31)).
Along this line, the fractal dimensionDline of the graph ofP is given by (7), in which,
from (6), β = 2. Thus

Dline = 1
2(5 − 2) = 3

2. (33)

Finally, the fractal dimension of the hypersurface ofP over r is (Mandelbrot 1982)

Dspace= Dline + D − 1 = D + 1
2. (34)

4. One dimension

For a particle confined on the unit interval|ξ | 6 1/2, the superposition (4) can be easily
determined to be the following function ofξ and a rescaled timeτ :

9(ξ, τ ) = 2

π

∞∑
n=0

(−1)n(
n + 1

2

) cos
{
2π ξ

(
n + 1

2

)}
exp

{
−iπ τ

(
n + 1

2

)2
}

= 1

π

∞∑
n=−∞

(−1)n(
n + 1

2

) exp
{

iπ
[
2ξ

(
n + 1

2

) − τ
(
n + 1

2

)2
]}

(35)
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(this formula is a special case of (20)–(23)). The symmetries

9(ξ, −τ) = 9∗ (ξ, τ ) ; 9(ξ, τ + 1) = exp{−iπ/4} 9(ξ, τ );
i.e. 9(ξ, 1 − τ) = exp{−iπ/4} 9∗(ξ, τ );
9(−ξ, τ ) = 9 (ξ, τ ) ; 9(ξ + 1, τ ) = −9(ξ, τ );
i.e. 9(1 − ξ, τ ) = −9 (ξ, τ )

(36)

mean that the probability densityP(ξ, τ ) need be calculated only for times (06 τ 6 1/2),
and can be periodically continued outside the box, that is for|ξ | > 1/2. The wave (35),
with a constant added, also describes the Talbot effect (Berry and Klein 1996) for light
diffracted into the spaceτ > 0 beyond a grating with sharp slits whose width is half the
grating period.

The series (35) converges slowly, but can still be used to compute9 and so illustrate
the time and space fractals (figure 1 shows typical examples). The greater irregularity of
the time fractal, with dimensionDtime = 7/4, in comparison with the space fractal, whose
dimension (equation 34) isDspace= 3/2, is evident, and the curves resemble others (e.g.
Berry and Lewis 1980) with similar fractal dimensions. Both fractals are illustrated as a
landscape in figure 2 (from the side) and figure 3 (in plan view). It appears thatP(ξ, τ )

is not an amorphous fractal, but contains much additional structure. Two aspects of this
structure will now be elucidated.

Figure 2. Illuminated landscape plot of the fractal probability densityP(ξ, τ ) in time and space
for a particle in a box.

First, at rational timesτ the graph ofP is not fractal but is piecewise constant. For
example, whenτ = 0 the initial condition requiresP = 1, and whenτ = 1/2 it can be
seen in figures 2 and 3 thatP = 2 for |ξ | < 1/4 andP = 0 for 1/4 6 |ξ | < 1/2. These
rational times correspond toquantum revivals, where the initial wave gets reconstructed by
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Figure 3. Plan view of the fractal probability density landscapeP(ξ, τ ) in time and space for
a particle in a box.

constructive interference, either exactly (integerτ ) or partially (τ fractional but non-integer).
For a large class of quantum systems, the theory of revivals was given by Averbukh and
Perelman (1989) and recently elaborated by Leichtleet al (1996) (see also Mallalieu and
Stroud 1995). The particle in a box provides a surprisingly simple particular case that can be
studied in detail; this fact was also appreciated by Stifteret al (1996), who gave the theory
of revivals for this case and illustrated it with Gaussian (that is, smooth) wavepackets. The
theory is almost identical to that of the self-images of diffraction gratings in the Talbot
effect, given in detail elsewhere (see, for example, Berry and Klein 1996), so here I give
just the outline of the analysis.

Let the wave (35) be written as the integral, over the initial state9(ξ, 0) = 1, of the
propagatorK(ξ, τ ), namely

9(ξ, τ ) =
∫ 1/2

−1/2
dξ0K (ξ − ξ0, τ ) ,

where K(ξ, τ ) =
∞∑

n=−∞
exp

{
iπ

[
2ξ

(
n + 1

2

) − τ
(
n + 1

2

)2
]}

. (37)

Now setτ = p/q, wherep andq are mutually prime integers, and split the sum into groups
of q terms by defining

n = lq + s (−∞ < l < ∞, 1 6 s 6 q). (38)

The crucial observation is that the exponential involvingl2 can be simplified, because

exp
{−iπpql2

} = exp
{−iπqepl

}
whereep = 1 (p even) 0 (p odd). (39)

This enables the sum overl to be evaluated as a series ofδ functions, to give, after some
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reduction,

K

(
ξ,

p

q

)
= 1√

q

∞∑
n=−∞

An(q, p)δ

(
ξ − 1

2

(
ep + p

q

)
− n

q

)
where

An(q, p) = 1√
q

exp

{
iπ

(
p

4q
+ ep

2
+ n

q

)}
×

q∑
s=1

exp

{
i
π

q

(
(2n + qep)s − ps2

)}
.

(40)

When combined with the integral (37), this result shows that the wave for these rational
times is the superposition ofq shifted copies of the initial wave in the box (set equal to zero
outside). The nature of the superposition is determined by theAn, which are pure phase
factors, that is

An(q, p) = exp{i8n (q, p)} . (41)

The phases can be evaluated explicitly by recognizing the formula forAn in (40) as
a variant of the Gauss sum of number theory. An elementary derivation can be found in
appendix A of Hannay and Berry (1980). The result is

8(n; q, p) = π

[
1
4

(
q + p

q
+ 1

)
+ n

q
+ p

q
(p\q)2n2 − 1

2

(
p

q

)]
(a)

= π

[
1
4

(
p + p

q

)
+ n

q
+ p

q
(p\q)2

(
n + 1

2q
)2 + 1 − 1

2

(
q

p

)]
(b)

= π

[
1
4

(
q + p

q
+ 3

)
+ n

q
+ 4p

q
(4p\q)2

(
n + 1

2q
)2 − 1

2

(
p

q

)]
(c)


(a) : (p even, q odd); (b) : (p odd, q even); (c) : (p odd, q odd) .

(42)

Here,(p\q) is the integer inverse ofp modq, given by

(p\q) = p(φE(q)−1) modq (43)

whereφE(q) denotes Euler’s totient function (number of positive integers less thanq that

are relatively prime toq), and

(
p

q

)
is the Jacobi symbol, which takes the value+1 or −1,

and is defined as the product of Legendre symbols

(
p

s

)
for all prime factorss of q, these

in turn being defined as(
p

s

)
= +1 if there is an integerm such thatm2 ≡ p mods

−1 if there is no integerm such thatm2 ≡ p mods.

}
(44)

Figure 4(a) shows an example of a fractional revival of the probability density, computed
using these formulas. Confirmation of the correctness of the analysis was obtained by
computing9 for the sameτ with the modal series (35), which gave exactly the same
picture (apart from Gibbs oscillations smoothing the discontinuities, caused by truncating
the series).

The second peculiarity of the one-dimensional box was discovered after noticing the
diagonal lines in figures 2 and 3. These lines correspond to particular spacetime slices
through theP landscape, on which, as will now be shown, partial destructive interference
between the terms in (35) reduces the fractal dimension.
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Figure 4. (a) Fractional quantum revival at timeτ = 1/10 for particle in one-dimensional box;
(b) Fractal probability density along the spacetime sliceξ = (1 − τ)/2, with the dimension
Ddiagonal= 5/4.

Consider the phase in the second sum in (35), namely

χ(ξ, τ, n) = π
[
n + 2ξ

(
n + 1

2

) − τ
(
n + 1

2

)2
]

(45)

on the spacetime slice

ξ = aτ + 1
2b. (46)

We seek cancellation between pairs of exponentials with positive and negativen in (35),
that is betweenn and−n − k. The condition for this is (after noting the opposite signs of
the factor 1/(n + 1/2) for positive and negativen),

1χ = 0 (mod 2π) (47)

where

1χ ≡ χ
(
aτ + 1

2b, τ, n
) − χ

(
aτ + 1

2b, τ,−n − k
)

= π(2n + k) [1 + b + τ(2a + k − 1)] (48)

The condition (47) must hold everywhere on the slice, that is for allτ , and also for alln.
Thus

a = 1
2(1 − k), b integer. (49)

Therefore

1χ = π k(1 + b) (50)

from which follows, from (46),

b odd if k is odd,b unrestricted ifk is even. (51)
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Collecting these results, we find cancellation on the lines

ξ = mτ + n + 1
2 (m 6= 0) , ξ = (

m + 1
2

)
τ + 1

2n (m, n integer). (52)

Some of these lines are shown in figure 5. Note that the picture is not symmetrical; for
example, the lineξ = τ is not present, although the lineξ = 1/2− τ is. On any such line,
the contribution of termsn, −n − k in (35) is proportional to

1

n + 1
2

+ 1

−n − k + 1
2

= k − 1(
n + 1

2

) (
n + k − 1

2

) → k − 1

n2
. (53)

Figure 5. Spacetime lines on which the probability density for the particle in a one-dimensional
box has the fractal dimensionDdiagonal= 5/4.

In the power spectrum, the contribution of these terms is therefore reduced fromn−2 to
n−4, giving an extra factorE−1 in the power spectrum (18) in the calculation of the time
fractal. (The casek = 1 is an exception, because the cancellation is exact; this corresponds
to the excluded valuem = 0 in the first equation in (52), that is to the edges of the box,
where9 = 0.) Thereforeβ = 5/2 in (6), and, from (7), the fractal dimension of the graph
of P along these special spacetime lines is

Ddiagonal= 5
4. (54)

One of these diagonal fractals is shown in figure 4(b); it is noticeably less irregular than
either of the fractals in figure 1, whose fractal dimensions are greater. Duistermaat (1991)
gives a full analysis of a function closely related to this ‘diagonal’ special case. The lines
(52) also appear as ’canals’ in the analogous computations for Gaussian wavepackets (Stifter
et al 1996).

There may be further treasures hidden in the sum (35), for example spacetime lines (not
necessarily straight) on which more complicated interference between groups of terms leads
to fractal probability densities with dimensions different fromDtime, Dspace, or Ddiagonal.

5. Fractals in fractal boxes

Suppose now that the box has a fractal boundary, that is∂B has dimensionD − 1 + γ

(where 06 γ < 1), rather thanD − 1. Therefore the areaA (that is, theD − 1 measure
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of ∂B) is infinite, but theD − 1 + γ measureAγ is finite. The arguments of sections 2
and 3 no longer apply, because they lead to divergent formulae involvingA (cf (18) and
(32)). I will suggest a simple modification that givesDtime andDspacein these cases. The
modification is the same as that which led to a modified form of the corrections to Weyl’s
law for the eigenvalue counting function in boxes with fractal boundaries (Berry 1979); this
was far from rigorous, and it is still not clear exactly when it applies (see e.g. Lapidus 1991,
Lapidus and Pomerance 1996), although it probably holds for ‘non-pathological fractals’,
where the Hausdorff, Minkowski and other fractal dimensions of∂B are the same.

The physical idea underlying the modification is that the box eigenfunctionφn(r) is
insensitive to details of∂B on linear scales finer than the wavelength 1/kn. This suggests
that in calculating the mode coefficientcn in (4), ∂B can be replaced by the boundary
smoothed over a wavelength, so thatA can be replaced by the wavelength-smoothed area
A(kn), where

A(k) ≈ Aγ kγ . (55)

With this replacement, and recallingk = √
E, the power spectrum (18) becomes

|a(E)|2 = C Aγ

V E(3−γ )/2
. (56)

Thus in (7)β acquires an extra contribution−γ /2, and the dimension of the time fractal is
changed from (19) to

Dtime = (7 + γ )

4
. (57)

Similar reasoning applied to (31) gives an extra factorkγ in (31), and hence an extra factor
k

γ
x in (32), so that nowβ acquires an extra contribution−γ , and the dimension of the space

fractal is changed from (34) to

Dspace= D + 1

2
+ γ

2
. (58)

It is interesting that in the limitγ → 1 for which∂B is no longer continuous, the probability
densityP approaches a function that is discontinuous in both time (becauseDtime → 2)
and space (becauseDspace→ D + 1).
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Appendix. Intensity and amplitude fractals

For the amplitude (5), the intensity is

I (u) ≡ |f (u)|2 =
∑
m

∑
n

ama∗
n exp{i(m − n) u} ≡

∑
l

Il exp{il u} ,

whereIl =
∑

n

an+la
∗
n. (A1)

The power spectrum ofI (u) is the average of|Il|2 over the random phases of theam, that
is 〈|Il|2

〉
phases=

〈∑
m

∑
n

a∗
m+lan+lama∗

n

〉
phases

=
∑

n

|an+l|2 |an|2 . (A2)
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For |l| � 1, the sum overn is dominated by the regions nearn = 0 andn = −l, and the
asymptotic behaviour (6) gives〈|Il|2

〉
phases∝

2

|l|β
∑

n

|an|2. (A3)

The sum exists wheneverβ > 1, that is whenever the functionf (u) is continuous. Then
the power spectrum of the intensityI , and hence its fractal dimension, is indeed the same
as that of Ref and Imf , as argued in section 1.
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